banner



3d Max 2019 Game Design

3D computer graphics program

Autodesk 3ds Max
Logo for 3ds Max.png
Developer(s) Autodesk, Inc.
Initial release April 1996; 25 years ago  (1996-04) [1] (as 3D Studio MAX)
Stable release

2022 / March 24, 2021; 7 months ago  (2021-03-24)

Operating system Windows 7 or later
Platform x86-64
Predecessor 3DS Studio
Available in English, German, French, Brazilian Portuguese, Japanese, Chinese, Korean
Type 3D computer graphics
License Software as a service, Trialware
Website www.autodesk.com/products/3ds-max/overview

Autodesk 3ds Max, formerly 3D Studio and 3D Studio Max, is a professional 3D computer graphics program for making 3D animations, models, games and images. It is developed and produced by Autodesk Media and Entertainment.[2] It has modeling capabilities and a flexible plugin architecture and must be used on the Microsoft Windows platform. It is frequently used by video game developers, many TV commercial studios, and architectural visualization studios. It is also used for movie effects and movie pre-visualization. For its modeling and animation tools, the latest version[ which? ] of 3ds Max also features shaders (such as ambient occlusion and subsurface scattering), dynamic simulation, particle systems, radiosity, normal map creation and rendering, global illumination, a customizable user interface, new icons, and its own scripting language.[3]

History [edit]

The original 3D Studio product was created for the DOS platform by the Yost Group, and published by Autodesk. The release of 3D Studio made Autodesk's previous 3D rendering package AutoShade obsolete. After 3D Studio DOS Release 4, the product was rewritten for the Windows NT platform, and renamed "3D Studio MAX". This version was also originally created by the Yost Group. It was released by Kinetix, which was at that time Autodesk's division of media and entertainment.

Autodesk purchased the product at the second release update of the 3D Studio MAX version and internalized development entirely over the next two releases. Later, the product name was changed to "3ds max" (all lower case) to better comply with the naming conventions of Discreet, a Montreal-based software company which Autodesk had purchased.

When it was re-released (release 7), the product was again branded with the Autodesk logo, and the short name was again changed to "3ds Max" (upper and lower case), while the formal product name became the current "Autodesk 3ds Max".[4]

Version history [edit]

Version Codename Year Operating system Hardware platform
3D Studio Prototype THUD 1988 MS-DOS 16-bit x86 originally
32-bit x86 using DOS extender
3D Studio THUD 1990
3D Studio 2 1992
3D Studio 3 1993
3D Studio 4 1994
3D Studio MAX 1.0 Jaguar 1996 Windows NT 3.51, Windows NT 4.0 IA-32
3D Studio MAX R2 Athena 1997[1] Windows 95 and Windows NT 4.0
3D Studio MAX R3 Shiva 1999
Discreet 3dsmax 4 Magma 2000 Windows 98, Windows ME, Windows 2000[5]
Discreet 3dsmax 5 Luna 2002 Windows 98 (only 3dsmax 5) Windows 2000 and Windows XP
Discreet 3dsmax 6 Granite 2003
Discreet 3dsmax 7 Catalyst 2004
Autodesk 3ds Max 8 Vesper 2005
Autodesk 3ds Max 9 Makalu 2006 IA-32 and x64
Autodesk 3ds Max 2008 Gouda 2007 Windows XP and Windows Vista
Autodesk 3ds Max 2009 Johnson 2008
Autodesk 3ds Max 2010 Renoir 2009
Autodesk 3ds Max 2011 Zelda 2010 Windows XP, Windows Vista and Windows 7
Autodesk 3ds Max 2012 Excalibur / Rampage 2011
Autodesk 3ds Max 2013 SimCity 2012 Windows XP and Windows 7
Autodesk 3ds Max 2014 Tekken 2013 Windows 7 x64
Autodesk 3ds Max 2015 Elwood 2014 Windows 7 and Windows 8
Autodesk 3ds Max 2016 Phoenix 2015 Windows 7, Windows 8 and Windows 8.1
Autodesk 3ds Max 2017 Kirin 2016 Windows 7, Windows 8, Windows 8.1 and Windows 10
Autodesk 3ds Max 2018 Imoogi 2017
Autodesk 3ds Max 2019 Neptune 2018
Autodesk 3ds Max 2020 Athena 2019
Autodesk 3ds Max 2021 Theseus 2020
Autodesk 3ds Max 2022 Heimdall 2021 Windows 10 and Windows 11 x64

Features [edit]

MAXScript
MAXScript is a built-in scripting language that can be used to automate repetitive tasks, combine existing functionality in new ways, develop new tools and user interfaces, and much more. Plugin modules can be created entirely within MAXScript.
Character Studio
Character Studio was a plugin which since version 4 of Max is now integrated in 3ds Max; it helps users to animate virtual characters. The system works using a character rig or "Biped" skeleton which has stock settings that can be modified and customized to fit the character meshes and animation needs. This tool also includes robust editing tools for IK/FK switching, Pose manipulation, Layers and Keyframing workflows, and sharing of animation data across different Biped skeletons. These "Biped" objects have other useful features that help accelerate the production of walk cycles and movement paths, as well as secondary motion.
Scene Explorer
Scene Explorer, a tool that provides a hierarchical view of scene data and analysis, facilitates working with more complex scenes. Scene Explorer has the ability to sort, filter, and search a scene by any object type or property (including metadata). Added in 3ds Max 2008, it was the first component to facilitate .NET managed code in 3ds Max outside of MAXScript.
DWG import
3ds Max supports both import and linking of .dwg files. Improved memory management in 3ds Max 2008 enables larger scenes to be imported with multiple objects.
Texture assignment/editing
3ds Max offers operations for creative texture and planar mapping, including tiling, mirroring, decals, angle, rotate, blur, UV stretching, and relaxation; Remove Distortion; Preserve UV; and UV template image export. The texture workflow includes the ability to combine an unlimited number of textures, a material/map browser with support for drag-and-drop assignment, and hierarchies with thumbnails. UV workflow features include Pelt mapping, which defines custom seams and enables users to unfold UVs according to those seams; copy/paste materials, maps and colors; and access to quick mapping types (box, cylindrical, spherical).
General keyframing
Two keying modes — set key and auto key — offer support for different keyframing workflows.
Fast and intuitive controls for keyframing — including cut, copy, and paste — let the user create animations with ease. Animation trajectories may be viewed and edited directly in the viewport.
Constrained animation
Objects can be animated along curves with controls for alignment, banking, velocity, smoothness, and looping, and along surfaces with controls for alignment. Weight path-controlled animation between multiple curves, and animate the weight. Objects can be constrained to animate with other objects in many ways — including look at, orientation in different coordinate spaces, and linking at different points in time. These constraints also support animated weighting between more than one target.
All resulting constrained animation can be collapsed into standard keyframes for further editing.
Skinning
Either the Skin or Physique modifier may be used to achieve precise control of skeletal deformation, so the character deforms smoothly as joints are moved, even in the most challenging areas, such as shoulders. Skin deformation can be controlled using direct vertex weights, volumes of vertices defined by envelopes, or both. Capabilities such as weight tables, paintable weights, and saving and loading of weights offer easy editing and proximity-based transfer between models, providing the accuracy and flexibility needed for complicated characters.
The rigid bind skinning option is useful for animating low-polygon models or as a diagnostic tool for regular skeleton animation.
Additional modifiers, such as Skin Wrap and Skin Morph, can be used to drive meshes with other meshes and make targeted weighting adjustments in tricky areas.
Skeletons and inverse kinematics (IK)
Characters can be rigged with custom skeletons using 3ds Max bones, IK solvers, and rigging tools powered by Motion Capture Data.
All animation tools — including expressions, scripts, list controllers, and wiring — can be used along with a set of utilities specific to bones to build rigs of any structure and with custom controls, so animators see only the UI necessary to get their characters animated. Four plug-in IK solvers ship with 3ds Max: history-independent solver, history-dependent solver, limb solver, and spline IK solver. These powerful solvers reduce the time it takes to create high-quality character animation. The history-independent solver delivers smooth blending between IK and FK animation and uses preferred angles to give animators more control over the positioning of affected bones. The history-dependent solver can solve within joint limits and is used for machine-like animation. IK limb is a lightweight two-bone solver, optimized for real-time interactivity, ideal for working with a character arm or leg. Spline IK solver provides a flexible animation system with nodes that can be moved anywhere in 3D space. It allows for efficient animation of skeletal chains, such as a character's spine or tail, and includes easy-to-use twist and roll controls.
Integrated Cloth solver
In addition to reactor's cloth modifier, 3ds Max software has an integrated cloth-simulation engine that enables the user to turn almost any 3D object into clothing and even build garments from scratch. Collision solving is fast and accurate even in complex simulations. Local simulation lets artists drape cloth in real time to set up an initial clothing state before setting animation keys.
Cloth simulations can be used in conjunction with other 3ds Max dynamic forces, such as Space Warps. Multiple independent cloth systems can be animated with their own objects and forces. Cloth deformation data can be cached to the hard drive to allow for nondestructive iterations and to improve playback performance.
Integration with Autodesk Vault
Autodesk Vault plug-in, which ships with 3ds Max, consolidates users' 3ds Max assets in a single location, enabling them to automatically track files and manage work in progress. Users can easily and safely find, share, and reuse 3ds Max (and design) assets in a large-scale production or visualization environment.

Data Channel Modifier [edit]

The Data Channel modifier is a versatile tool for automating complex modelling operations. By piping mesh data through a series of controls, you can achieve a huge variety of effects that dynamically update as you make changes.

Max Creation Graph [edit]

Introduced with Max 2016, Max Creation Graph (MCG) enables users to create modifiers, geometry, and utility plug-ins using a visual node-based workflow.
With MCG the user can create a new plug-in for 3ds Max in minutes by simply wiring together parameter nodes, computation nodes, and output nodes. The resulting graph can then be saved in an XML file (.maxtool) or be packaged with any compounds (.maxcompound) it depends on in a ZIP file (.mcg) which can be shared easily with 3ds Max users.
Open Shading Language (OSL)
Open shading language (OSL) lets you use a new OSL Map, an entire category of various OSL maps, and you can create your own OSL maps using development tools for use with any renderer.
Open shading language (OSL) is an open source shading language that is fairly simple to understand. It can be used in several different ways. You can use the OSL Map, which is an execution environment for OSL shaders inside of 3ds Max, and it works like any regular built-in 3ds Max map. There is also a category of pre-loaded OSL maps that you can easily use. In addition, you can use any OSL maps you download from the internet. Finally, you can creating a shader or map in OSL using our development tools. This is a much simpler method to create custom maps than developing the equivalent functionality as a 3ds Max C++ map.

Advanced Wood [edit]

the Advanced Wood map to generate realistic 3D wood textures.

Adoption [edit]

Many films have made use of 3ds Max, or previous versions of the program under previous names, in CGI animation, such as Avatar and 2012, which contain computer generated graphics from 3ds Max alongside live-action acting. Mudbox was also used in the final texturing of the set and characters in Avatar, with 3ds Max and Mudbox being closely related.

3ds Max has been used in the development of 3D computer graphics for a number of video games.[1]

Architectural and engineering design firms use 3ds Max for developing concept art and previsualization.

Educational programs at secondary and tertiary level use 3ds Max in their courses on 3D computer graphics and computer animation. Students in the FIRST competition for 3d animation are known to use 3ds Max.

Modeling techniques [edit]

Polygon modeling [edit]

Polygon modeling is more common with game design than any other modeling technique as the very specific control over individual polygons allows for extreme optimization. Usually, the modeler begins with one of the 3ds max primitives, and using such tools as bevel and extrude, adds detail to and refines the model. Versions 4 and up feature the Editable Polygon object, which simplifies most mesh editing operations, and provides subdivision smoothing at customizable levels (see NURMS).

Version 7 introduced the edit poly modifier, which allows the use of the tools available in the editable polygon object to be used higher in the modifier stack (i.e., on top of other modifications).

NURBS in 3ds Max is a legacy feature. None of the features have been updated since version 4 and have been ignored by the development teams over the past decade. For example, the updated path deform and the updated normalize spline modifiers in version 2018 do not work on NURBS curves anymore as they did in previous versions.

NURBS (Non-Uniform Rational Based-Splines) [edit]

An alternative to polygons, it gives a smoothed out surface that eliminates the straight edges of a polygon model. NURBS is a mathematically exact representation of freeform surfaces like those used for car bodies and ship hulls, which can be exactly reproduced at any resolution whenever needed. With NURBS, a smooth sphere can be created with only one face.

The non-uniform property of NURBS brings up an important point. Because they are generated mathematically, NURBS objects have a parameter space in addition to the 3D geometric space in which they are displayed. Specifically, an array of values called knots specifies the extent of influence of each control vertex (CV) on the curve or surface. Knots are invisible in 3D space and can't be manipulated directly, but occasionally their behavior affects the visible appearance of the NURBS object. Parameter space is one-dimensional for curves, which have only a single U dimension topologically, even though they exist geometrically in 3D space. Surfaces have two dimensions in parameter space, called U and V.[6]

NURBS curves and surfaces have the important properties of not changing under the standard geometric affine transformations (Transforms), or under perspective projections. The CVs have local control of the object: moving a CV or changing its weight does not affect any part of the object beyond the neighboring CVs. (This property can be overridden by using the Soft Selection controls). Also, the control lattice that connects CVs surrounds the surface. This is known as the convex hull property.[7]

Surface tool/editable patch object [edit]

Surface tool was originally a 3rd party plugin, but Kinetix acquired and included this feature since version 3.0.[ citation needed ] The surface tool is for creating common 3ds Max splines, and then applying a modifier called "surface." This modifier makes a surface from every three or four vertices in a grid. It is often seen as an alternative to "mesh" or "nurbs" modeling, as it enables a user to interpolate curved sections with straight geometry (for example a hole through a box shape). Although the surface tool is a useful way to generate parametrically accurate geometry, it lacks the "surface properties" found in the similar Edit Patch modifier, which enables a user to maintain the original parametric geometry whilst being able to adjust "smoothing groups" between faces.[ citation needed ]

Predefined primitives [edit]

This is a basic method, in which one models something using only boxes, spheres, cones, cylinders and other predefined objects from the list of Predefined Standard Primitives or a list of Predefined Extended Primitives. One may also apply boolean operations, including subtract, cut and connect. For example, one can make two spheres which will work as blobs that will connect with each other. These are called metaballs.[8]

3ds Max Standard Primitives

3ds Max Standard Primitives: Box (top right), Cone (top center), Pyramid (top left), Sphere (bottom left), Tube (bottom center) and Geosphere (bottom right)

3ds Max Extended Primitives

3ds Max Extended Primitives: Torus Knot (top left), ChamferCyl (top center), Hose (top right), Capsule (bottom left), Gengon (bottom, second from left), OilTank (bottom, second from right) and Prism (bottom right)

Standard primitives [edit]

Box: Produces a rectangular prism. An alternative variation of box called Cub proportionally constrains the length, width, and height of the box.
Cylinder: Produces a cylinder.
Torus: Produces a torus – or a ring – with a circular cross section, sometimes referred to as a doughnut.
Teapot: Produces a Utah teapot. Since the teapot is a parametric object, the user can choose which parts of the teapot to display after creation. These parts include the body, handle, spout and lid. Primarily used to test shaders (rendering settings).
Cone: Produces upright or inverted cones.
Sphere: Produces a full sphere, semi-sphere, or other portion of a sphere.
Tube: Produces round or prismatic tubes. The tube is similar to the cylinder with a hole in it.
Pyramid: Produces a pyramid with a square or rectangular base and triangular sides.
Plane: Produces a special type of flat polygon mesh that can be enlarged by any amount at render time. The user can specify factors to magnify the size or number of segments or both. Modifiers such as displace can be added to a plane to simulate a hilly terrain.
Geosphere: Produces spheres and hemispheres based on three classes of regular polyhedrons.

Extended primitives [edit]

Hedra: Produces objects from several families of polyhedra.
ChamferBox: Produces a box with beveled or rounded edges.
OilTank: Creates a cylinder with convex caps.
Spindle: Creates a cylinder with conical caps.
Gengon: Creates an extruded, regular-sided polygon with optionally filleted side edges.
Prism: Creates a three-sided prism with independently segmented sides.
Torus knot: Creates a complex or knotted torus by drawing 2D curves in the normal planes around a 3D curve. The 3D curve (called the Base Curve) can be either a circle or a torus knot. It can be converted from a torus knot object to a NURBS surface.
ChamferCyl: Creates a cylinder with beveled or rounded cap edges.
Capsule: Creates a cylinder with hemispherical caps.
L-Ex: Creates an extruded L-shaped object.
C-Ext: Creates an extruded C-shaped object.
Hose: Creates a flexible object, similar to a spring.

Rendering [edit]

Scanline rendering
The default rendering method in 3ds Max is scanline rendering. Several advanced features have been added to the scanliner over the years, such as global illumination, radiosity, and ray tracing.
ART Renderer
Autodesk Raytracer Renderer (ART) is a CPU-only, physically based renderer for architectural, product, and industrial design renderings and animations. It is integrated into 3ds Max as of version 2017.
Redshift
A third-party GPU-accelerated, biased renderer with plugins for 3ds Max, Cinema 4D, Houdini, Katana and Maya.
Mental Ray
Mental ray is a third-party renderer using bucket rendering, a technique that allows distributing the rendering task for a single image between several computers. Since 3ds Max 2018, mental ray is no longer shipped with 3ds Max and needs to be obtained directly from NVIDIA.
RenderMan
A third party connection tool to RenderMan pipelines is also available for those that need to integrate Max into Renderman render farms. Used by Pixar for rendering several of their CGI animated films.
V-Ray
A third-party render engine plug-in for 3ds Max.
Brazil R/S
A third-party photorealistic rendering system. It is capable of fast ray tracing and global illumination.
Arion
A third party hybrid GPU+CPU interactive, unbiased ray tracer, based on Nvidia CUDA.
Indigo Renderer
A third-party photorealistic renderer with plugins for 3ds Max.
Maxwell Render
A third-party photorealistic rendering system providing materials and unbiased rendering.
Octane Render
A third party unbiased GPU ray tracer with plugins for 3ds Max, based on Nvidia CUDA.
Luxrender
An open-source ray tracer supporting 3ds Max, Cinema 4D, Softimage, and Blender. Focuses on photorealism by simulating real light physics as much as possible.
Arnold
Arnold is an unbiased, physically based, unidirectional path-tracing renderer.

Corona Renderer

Corona Renderer is a modern high-performance (un)biased photorealistic renderer.

Licensing [edit]

Earlier versions (up to and including 3D Studio Max R3.1) required a special copy protection device (called a dongle) to be plugged into the parallel port while the program was run, but later versions incorporated software based copy prevention methods instead. Current versions require online registration.

Due to the high price of the commercial version of the program, Autodesk also offers a free student version, which explicitly states that it is to be used for "educational purposes only". The student version has identical features to the full version, but is only for single use and cannot be installed on a network. The student license expires after three years, at which time the user, if they are still a student, may download the latest version, thus renewing the license for another three years.

See also [edit]

  • Comparison of 3D computer graphics software
  • .3ds
  • Autodesk Maya
  • Blender
  • Cinema 4D
  • Electric Image Animation System
  • Element 3D
  • Lightwave 3D
  • Modo
  • Cyber Studio

References [edit]

  1. ^ a b c "Toolbox". Next Generation. No. 35. Imagine Media. November 1997. p. 27.
  2. ^ "Autodesk | 3D Design, Engineering & Entertainment Software"' November 21, 2013
  3. ^ "Autodesk 3ds Max — Detailed Features" Archived February 19, 2011, at the Wayback Machine, March 25, 2008
  4. ^ "History of Autodesk 3ds Max". Archived from the original on October 24, 2015.
  5. ^ "PC & Tech Authority". TechRadar.
  6. ^ "NURBS Curves and Surfaces", November 22, 2013
  7. ^ "Why is the Convex Hull property so important". Stack Exchange. November 22, 2013.
  8. ^ "Metaballs/Blobby Objects", November 22, 2013

External links [edit]

  • Official website Edit this at Wikidata
  • 3D Studio Max at Curlie
  • 3D Max Studio Course Benefits

3d Max 2019 Game Design

Source: https://en.wikipedia.org/wiki/Autodesk_3ds_Max

Posted by: colburndaris1987.blogspot.com

0 Response to "3d Max 2019 Game Design"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel